This book contains abstracts for presentations given during XV Congress of European Mycologists, held September 16–21, 2007, at the Park in Polykovskaya in St Petersburg, Russia. The principal organizer of the Congress is the Komarov Botanical Institute of the Russian Academy of Sciences. The other organizers are: European Mycological Association, Russian Academy of Sciences (Presidium, Branch of Biological Sciences, St Petersburg scientific center), Russian Academy of Agricultural Sciences, All-Russian Institute of Plant Protection (RAAS), Russian National Academy of Mycology, Lomonosov Moscow State University.

XVCEM Organizing Committee

Dr Alexander Kovalenko (Chairman, Russia)
Dr Nadezhda Psurtskeva (Secretary, Russia)
Dr Michael Andreev (Russia)
Dr Tetiana Andrianova (EMA Secretary, Ukraine)
Prof. Margarita Bondartseva (Russia)
Prof. Yuriy Dyakov (Russia)
Prof. Leo van Griensven (the Netherlands)

Prof. David Hawksworth (Spain & UK)
Prof. Sergei Inge-Vechtomov (Russia)
Prof. Mark Levitin (Russia)
Dr David Minter (EMA President, UK)
Dr Yuriy Novozhilov (Russia)
Prof. Yuriy Sergeev (Russia)
Prof. Igor Tikhonovich (Russia)

Programme committee

Prof. Margarita Bondartseva
Prof. Yuriy Dyakov
Prof. Elena Feofilova

Dr Alexander Kovalenko
Prof. Mark Levitin
Dr Yuriy Novozhilov

Prof. Igor Tikhonovich
Dr Elena Vedenyapina
Dr Ivan Zmitrovich

Local committee

Dr Eugenia Bogomolova
Dr Tatiana Gagkaeva
Dr Philipp Gannibal
Dr Irina Kirtsidely
Dr Anna Kiyashko

Dr Vera Kotkova
Dr Ekaterina Kotlova
Dr Alexander Kovalenko
MSc Ekaterina Malysheva
MSc Vera Malysheva

Dr Olga Morozova
Dr Yuriy Novozhilov
Dr Eugene Popov
Dr Nadezhda Psurtskeva
Dr Mikhail Zhurbenko

Abstract book editors

Dr Alexander Kovalenko
Dr Vadim Melnik

Dr Elena Vedenyapina
Dr Ivan Zmitrovich

Only copyediting and formatting of abstracts have been done, therefore the authors are fully responsible for the scientific content of their abstracts.

This edition was supported by the Russian Foundation for Basic Research (grant N 07-04-06074), the Russian Academy of Sciences and the UK Darwin Initiative.

ISBN 5-201-11138-6 © Komarov Botanical Institute, St Petersburg and authors of individual abstracts

Cover design by A. Kovalenko and E. Popov
LECCINUM SPECIES IN THE MIDDLE TAIGA OF WESTERN SIBERIA

E.A. Zvyagina

Nature reserve “Yugansky”, Surgut, Russia
mycena@yandex.ru

The mycoflora of West Siberian middle taiga is poorly investigated. The most of researches have been focused on wood-decaying fungi. The other groups of macromycetes including boletes have not been characterized. A study of Leccinum species is presented here. The Bolshoy Yugan river is a left tributary of the Ob. Types of vegetation represented here are: taiga dark coniferous forests and secondary pine and small-leaved mossy dwarf-shrub forests. The climate of this area is continental with moderately warm summers and moderately severe winters.

50 specimens of 10 species from 2 sections of the genus – Leccinum (L. aurantiacum, L. duriusculum, L. percandidum, L. versipelle, L. vulpinum) and Scabra (L. holopus, L. roseofractum, L. scabrum, L. schistophillum, L. varicolor) – were collected in 1997–2006 in the area of Bolshoy Yugan’s basin. Nine of them have been detected before in the southern part of Western Siberia and L. schistophillum is new for Western Siberia. We have had some difficulty identifying specimens with red pileus (L. aurantiacum, L. vulpinum). According to the identification keys, L. aurantiacum and L. vulpinum differ in mycorrhizal partners and tissue staining patterns when cut. Mycorrhizal partners were impossible to determine because 21 obscure specimens were collected in pine forests with aspen. We observed varying intensity of tissue staining in these specimens, but there was no clear distinction between colour tinges. The specimens were divided into two groups based on microscopic characteristics. The first group included specimens having short spores (12–14 μm) and indistinctly septate, 5–10 μm wide pileipellis hyphae with spherical vacuoles staining purple-brown in KOH and obtuse or acuminate terminal elements. These characters combined with dark reddish brown cup surface and almost non-bruising flesh were present in 5 specimens. The other group included specimens characterized by longer spores (16–18 μm) and pileipellis consisting of tangled septate cylindrical elements 5–10 μm wide, with obtuse or acuminate termini, elongated vacuoles and granules staining bright reddish-brown or yellowish in KOH. These characteristics could be combined with either dark reddish brown or bright orange cap. Most of specimens distinctively change colour when cut, a few stain only slightly or not at all. We tentatively identify the first group of specimens as L. vulpinum, the second group as L. aurantiacum. The most distinct differences between these groups of specimens consisted in spores size and pigmentation of the pileipellis hyphae. In Melzer’s we observed abundant spherical vacuoles in the pileipellis hyphae L. vulpinum in contrast to L. aurantiacum. Two specimens had macro- and microscopic characteristics L. aurantiacum, but context stained red when cut and not darkened.

Comparison descriptions of the species in diverse publications produced many questions. This circumstance very embarrassed identification.